Octal 3-State Inverting Buffer/Line Driver/Line Receiver

High-Performance Silicon-Gate CMOS

The MC74HC540A is identical in pinout to the LS540. The device inputs are compatible with Standard CMOS outputs. External pull–up resistors make them compatible with LSTTL outputs.

The HC540A is an octal inverting buffer/line driver/line receiver designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. This device features inputs and outputs on opposite sides of the package and two ANDed active-low output enables.

The HC540A is similar in function to the HC541A, which has noninverting outputs.

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7A Requirements
- Chip Complexity: 124 FETs or 31 Equivalent Gates

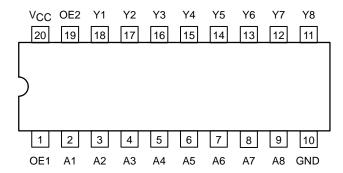


Figure 1. Pinout: 20-Lead Packages (Top View)

FUNCTION TABLE

	Inputs	Output V	
OE1	OE2	Α	Output Y
L	L	L	Н
L	L	Н	L
Н	Χ	Х	Z
X	Н	Х	Z

Z = High Impedance X = Don't Care

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

MC74HC540AN O AWLYYWW VVVVVVVVVVV

PDIP-20 N SUFFIX CASE 783

SO-20

DW SUFFIX

CASE 751D

TSSOP-20 DT SUFFIX CASE 948E

A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW= Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC74HC540AN	PDIP-20	1440/Box
MC74HC540ADW	SOIC-WIDE	38/Rail
MC74HC540ADWR2	SOIC-WIDE	1000/Reel
MC74HC540ADT	TSSOP-20	75/Rail
MC74HC540ADTR2	TSSOP-20	2500/Reel

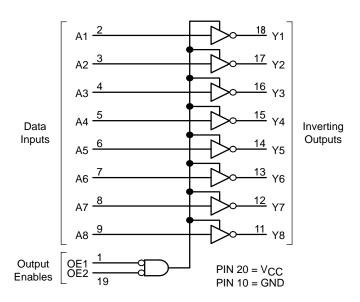


Figure 2. Logic Diagram

MAXIMUM RATINGS (Note 1.)

Symbol	Paran	neter	Value	Unit
Vcc	DC Supply Voltage		-0.5 to $+7.0$	V
VI	DC Input Voltage		-0.5 to $V_{CC} + 0.5$	V
VO	DC Output Voltage	(Note 2.)	$-0.5 \le V_{O} \le V_{CC} + 0.5$	V
Ικ	DC Input Diode Current		±20	mA
lok	DC Output Diode Current		±35	mA
IO	DC Output Sink Current		±35	mA
ICC	DC Supply Current per Supply Pin		±75	mA
IGND	DC Ground Current per Ground Pin		±75	mA
TSTG	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10) Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θЈА	Thermal Resistance	PDIP SOIC TSSOP	67 96 128	°C/W
PD	Power Dissipation in Still Air at 85°C	PDIP SOIC TSSOP	750 500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL-94-VO (0.125 in)	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 3.) Machine Model (Note 4.) Charged Device Model (Note 5.)	> 2000 > 200 > 1000	V
LATCH-UP	Latch-Up Performance Above	e V _{CC} and Below GND at 85°C (Note 6.)	±300	mA

^{1.} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.

- I_O absolute maximum rating must be observed.
 Tested to EIA/JESD22-A114-A.
- 4. Tested to EIA/JESD22-A115-A.
- 5. Tested to JESD22-C101-A.
- 6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

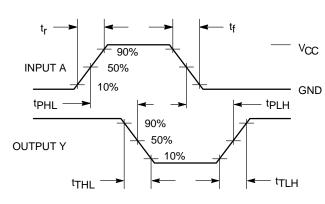
Symbol	Parameter			Max	Unit
VCC	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage	(Referenced to GND)	0	VCC	V
TA	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 3)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

^{7.} Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC CHARACTERISTICS (Voltages Referenced to GND)

				v _{CC}	Guara	nteed Lim	nit	
Symbol	Parameter	Condi	tion	V	–55 to 25°C	≤85°C	≤125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$		2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = V_{CC} - 0.1 $ $ I_{out} \le 20 \mu\text{A}$	/	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
VOH	Minimum High-Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \mu A$		2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		V _{in} = V _{IL}	$\begin{aligned} I_{Out} &\leq 3.6 \text{ mA} \\ I_{Out} &\leq 6.0 \text{ mA} \\ I_{Out} &\leq 7.8 \text{ mA} \end{aligned}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
VOL	Maximum Low–Level Output Voltage	$V_{in} = V_{iH}$ $ I_{out} \le 20 \mu A$		2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		V _{in} = V _{IH}	$ I_{Out} \le 3.6 \text{ mA}$ $ I_{Out} \le 6.0 \text{ mA}$ $ I_{Out} \le 7.8 \text{ mA}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
lin	Maximum Input Leakage Current	Vin = VCC or GND		6.0	±0.1	±1.0	±1.0	μΑ
loz	Maximum Three–State Leakage Current	Output in High Imp V _{in} = V _{IL} or V _{IH} V _{out} = V _{CC} or GN		6.0	±0.5	±5.0	±10.0	μА
lcc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$		6.0	4	40	160	μΑ

^{8.} Information on typical parametric values can be found in the ON Semiconductor High-Speed CMOS Data Book (DL129/D).


AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	v _{CC}	–55 to 25°C	≤85°C	≤125°C	Unit
tPLH,	Maximum Propagation Delay, Input A to Output Y	2.0	80	100	120	ns
^t PHL	(Figures 3 and 5)	3.0 4.5	30 18	40 23	55 28	
		6.0	15	20	25	
tPLZ,	Maximum Propagation Delay, Output Enable to Output Y	2.0	110	140	165	ns
^t PHZ	(Figures 4 and 6)	3.0	45	60	75	
		4.5	25	31	38	
		6.0	21	26	31	
t_{PZL} ,	Maximum Propagation Delay, Output Enable to Output Y	2.0	110	140	165	ns
^t PZH	(Figures 4 and 6)	3.0	45	60	75	
		4.5	25	31	38	
		6.0	21	26	31	
tTLH,	Maximum Output Transition Time, Any Output	2.0	60	75	90	ns
^t THL	(Figures 3 and 5)	3.0	22	28	34	
		4.5	12	15	18	
		6.0	10	13	15	
C _{in}	Maximum Input Capacitance		10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High Impedance State)		15	15	15	pF

^{9.} For propagation delays with loads other than 50 pF, and information on typical parametric values, see the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V, V _{EE} = 0 V	
C_{PD}	Power Dissipation Capacitance (Per Buffer) (Note 10.)	35	pF

^{10.} Used to determine the no-load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

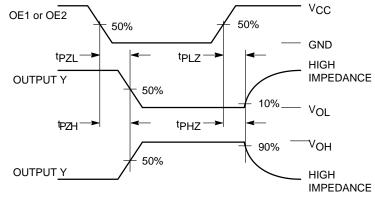
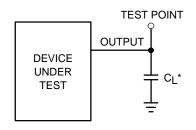
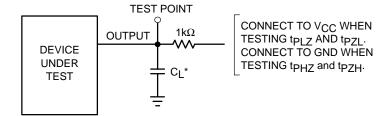




Figure 3. Switching Waveform

Figure 4. Switching Waveform

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 5. Test Circuit

Figure 6. Test Circuit

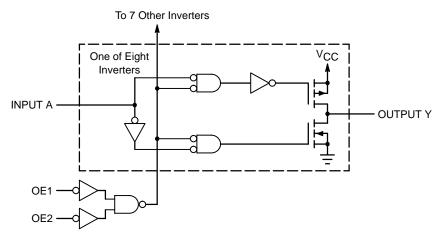


Figure 7. Logic Detail

PIN DESCRIPTIONS

INPUTS

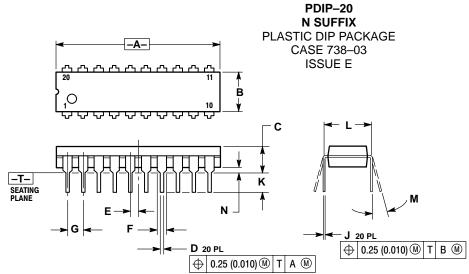
A1, A2, A3, A4, A5, A6, A7, A8 (PINS 2, 3, 4, 5, 6, 7, 8, 9)

Data input pins. Data on these pins appear in inverted form on the corresponding Y outputs, when the outputs are enabled.

CONTROLS

OE1, OE2 (PINS 1, 19)

Output enables (active-low). When a low voltage is applied to both of these pins, the outputs are enabled and the


device functions as an inverter. When a high voltage is applied to either input, the outputs assume the high impedance state.

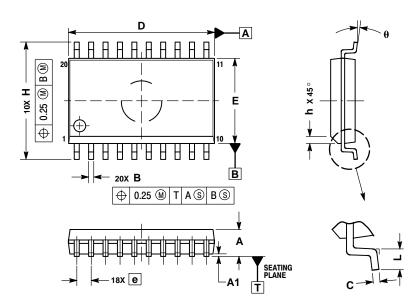
OUTPUTS

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8 (PINS 18, 17, 16, 15, 14, 13, 12, 11)

Device outputs. Depending upon the state of the output enable pins, these outputs are either inverting outputs or high-impedance outputs.

PACKAGE DIMENSIONS

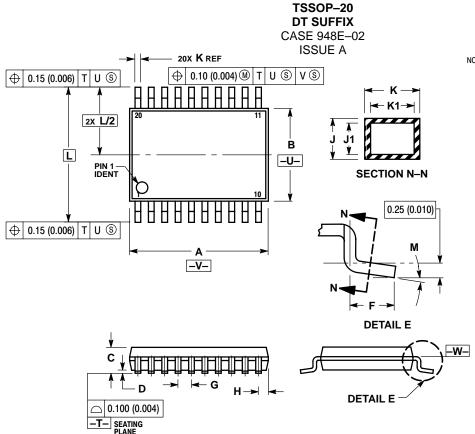
- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.022	0.39	0.55	
Е	0.050	BSC	1.27	BSC	
F	0.050	0.070	1.27	1.77	
G	0.100 BSC		2.54	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.140	2.80	3.55	
L	0.300	BSC	7.62	BSC	
M	0°	15°	0°	15°	
N	0.020	0.040	0.51	1.01	


SO-20 **DW SUFFIX** CASE 751D-05 ISSUE F

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME '714.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.35	2.65			
A1	0.10	0.25			
В	0.35	0.49			
С	0.23	0.32			
D	12.65	12.95			
E	7.40	7.60			
е	1.27	BSC			
Н	10.05	10.55			
h	0.25	0.75			
L	0.50	0.90			
θ	0°	7 °			

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED
- FLASH OR GATE BURRS SHALL NOT EXCEED
 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT
 EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE W-

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
M	0°	8°	0°	8°	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.